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Qutline of the D-TEC Flow

B Application Abstractions
Front End — Library Abstractions

DSL Specifications

\

Multi-level memory hierarchy optimization
Higher-order stencil optimization
Data-flow analysis/optimizations
Polyhedral Optimizations
Optimizer — Loop Optimization

Vectorization
Parallelization
Single and Multi-GPU optimizations
Autotuning based optimization selection

Generation Race-Free Verification
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5. Demonstrate how to extend for non-trivial app. evolution

Higher Order Stencils in ROSE/PolyOpt

« Significance / Impact
— High-order stencils arise in high-accuracy numerical solution approaches for PDEs

— Chombo and Overture applications make use of high-order stencils, but current
implementations pay a high compute cost for increased stencil order

— A new domain-specific optimization has enabled significantly enhanced performance for high-
order stencils, on multi-core processors

— Implication: more accurate solution schemes using high-order stencils can be run in about the
same time as one with lower order stencils and lower accuracy

* Generates hlgh-pelfformance High-Order Stencil Performance with
codes of > 10,000 lines Domain-Specific Optimizations
automatically from
< 20 lines DSL description
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Cardioid and SW4

Cardiac Electrophysiology Seismic Wave Propagation
15t Order 19 point stencil 4th order 125 point stencil

Both codes use structured grids and handle anisotropic inhomogeneous materials.
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Generated GPU Code for Cardioid

A variable coefficient stencil in the diffusion code

— Order-1 bandwidth-bound stencil on a 102 x 37 x 17 domain
— Original code with OMP (4 threads) achieves 3.76 Gflop/s

Efficient GPU code can be generated by a code generator

— With sufficiently high occupancy, and no register spills
— A naive generated code achieves 34.50 Gflop/s

Roofline Model Analysis:
— Operational intensity (ops/byte) : 0.18
— Maximum achievable Gflop/s: peak bandwidth * 0.18 = 51.91 Gflop/s

Performance Analysis:

— Generated code achieves 66.63% of the “roofline” maximum
— Achieved global memory load efficiency: 76.2%

— Achieved global memory store efficiency: 86.21
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SWA4 Kernel

= Simplest kernel from rhs4th3fort routine in SW4
= Complex high-order stencil
= Five 3D input arrays, three 3D output arrays

= Very high arithmetic intensity:
over 650 floating-point operations => over 10 FLOPs/byte

= Very different from Jacobi stencils frequently evaluated for
code generation
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SW4 stencil code

for( k= k1; k <= k2 ; k++ )

{
for( j
{

=jfirst+2; j <= jlast-2 ; j++ )

for( i=ifirst+2; i <= ilast-2 ; i++ )

{

/* from inner_loop_4a, 28x3 = 84 ops */

muxl = mu(i-1,j,k)*strx(i-1)-
tfx(mu(i,j,k)kstrx(i)+mu(i-2,j,k)*strx(i-2));

mux2 = mu(i-2,j,k)*strx(i-2)+mu(i+1,j,k)*strx(i+1)+
3x(mu(i,j,k)*strx(i)+mu(i-1,j,k)*strx(i-1));

mux3 = mu(i-1,j,k)*strx(i-1)+mu(i+2,j,k)*strx(i+2)+
3x(mu(i+l,j,k)*kstrx(i+1l)+mu(i,j,k)*strx(i));

mux4 = mu(i+l,j,k)*xstrx(i+l)-
tfx(mu(i,j,k)*kstrx(i)+mu(i+2,j,k)*strx(i+2));

muyl = mu(i,j-1,k)*stry(j-1)-
tfx(mu(i,j,k)*stry(j)+mu(i,j-2,k)*stry(j-2));
muy2 = mu(i,j-2,k)*xstry(j-2)+mu(i,j+1,k)*stry(j+1)+
3k(mu(i,j,k)*stry(j)+mu(i,j-1,k)*stry(j-1));
muy3 = mu(i,j-1,k)*stry(j-1)+mu(i,j+2,k)*stry(j+2)+
3k(mu(i,j+1,k)*stry(j+1)+mu(i,j, k)*stry(j));
muy4 = mu(i,j+1,k)*stry(j+1)-
tfx(mu(i,j,k)*stry(j)+mu(i, j+2,Kk)*stry(j+2));

muzl = mu(i,j,k-1)xstrz(k-1)-
tfx(mu(i,j,k)*kstrz(k)+mu(i,j,k-2)*strz(k-2));

muz2 = mu(i,j,k-2)*xstrz(k-2)+mu(i,j,k+1)*strz(k+1)+
3x(mu(i,j,k)*strz(k)+mu(i,j, k-1)*strz(k-1));
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Sw4 Haswell performance with index reordering

baseline SW4

~25% peak -y Orig C
Orig Fortran
New C
New Fortran
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SW4 performance with various padding added

adding in SW4

~25% peak|
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SW4 CPU Performance Observations

= The fortran vs C fight is fundamentally uninteresting to me
= Intel compiler does an impressive job with naive code

= Original fortran version out performs C
— C compiler misses a vectorization opportunity found by fortran compiler
— If you don’t want to think, use fortran
— Or, complain to your C compiler vendor

= Fortan and C performance are equal with trivial index swap
— May be better or worse than original fortran depending on problem size
— Performance dependence on problem size can be fixed with padding
— You can get better performance if you think

NYSH 10
ésa:un‘q’Adm[m‘s:ﬁ

LLNL-PRES-690278 National Nucl



Stencil Optimization for GPUS

= Recent research on stencil optimization has focused on “time-

tiling” and kernel fusion
— Reduce data movement to/from main memory for bandwidth limited
codes

= Higher-order stencils have higher arithmetic intensity
— Conventional wisdoms says this should be easier to optimize
— In practice, data re-use must be balanced with register pressure

= |nitial generated code for SW4 exhibited very poor performance
— HW counter analysis revealed massive register spilling
— Suggested use of opposite approach to typical kernel fusion optimization

for stencils: kernel fission
» Kernel fission reduces the register pressure per kernel
e But reduces data reuse and increases overall data traffic
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Kernel Fission and Fusion

Fission:
o Put each statement in a separate kernel

« Rewrite stencil statements as accumulations (statement splitting)
e A sub-statement reads from minimal number of inputs
C = stencil (A, B),—== C = stencil (A); C += stencil (B);
o If possible, split a sub-statement into stencils along only one dimension
C = stencil (Aij); —p C=stencil (A;); C+=stencil (Aj);

Fusion:
« Regroup accumulations across kernels to increase reuse and shorten live ranges

« Group statements with stencil along the same dimension together
+ Statements with high reuse are lexicographically closer

o Fuse kernels with no reuse to minimize data movement without increasing
register pressure
+ Group stencils along orthogonal dimensions together (no/low reuse implies low
probability of register spills)
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GPU Performance of SW4 Kernel

SW4
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Preliminary results for kernel from double precision (DP) rhs4th3fort routine of SW4

Compiled on Tesla K40c with 64 registers per thread
Spills for Original kernel: 1416 bytes spill stores, 1712 bytes spill loads

Split-Kernel contains 3 kernels, each using 64 registers per thread: O Register spills
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On Further Performance Improvement

= Kernel fission solves the register spill problem but...
— Performance is only about 15% of roofline bound
— Global memory access is not the bottleneck
— Limiting factor seems latency/bandwidth of L1/L2 cache

= Challenges for SW4 stencils on GPUs
— SW4 stencils are much more complex than single-array high-order
stencils optimized previously
— And this is the simplest stencil in SW4
— Smaller per-thread capacity of L1/L2 caches on GPU compared to CPU
— Cache performance worse on GPU compared to CPU

= Work is ongoing
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Summary

= Code generation is a big part of many portability solutions
— Raja, Kokkos, OpenMP, etc.
— Best techniques and practices are still shaking out
— Unreasonable to put the whole demand on vendor compiler

= Not all higher-order stencils are created equal
— Need more cooperation between application developers and tool chain
developers/researchers

= More registers would probably help
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